Publications


Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025)


Trista Cao, Anubrata Das, Tharindu Kumarage, Yixin Wan, Satyapriya Krishna, Ninareh Mehrabi, Jwala Dhamala, Anil Ramakrishna, Aram Galystan, Anoop Kumar, others

Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025), 2025


On localizing and deleting toxic memories in large language models


Anubrata Das, Manoj Kumar, Ninareh Mehrabi, Anil Ramakrishna, Anna Rumshisky, Kai-Wei Chang, Aram Galstyan, Morteza Ziyadi, Rahul Gupta

NAACL Findings, 2025


Finding Pareto Trade-offs in Fair and Accurate Detection of Toxic Speech


Soumyajit Gupta, Venelin Kovatchev, Anubrata Das, Maria De-Arteaga, Matthew Lease

Information Research an international electronic journal, vol. 30, 2025, pp. 123--141


🏅Human-centered NLP Fact-checking: Co-Designing with Fact-checkers using Matchmaking for AI


Houjiang Liu*, Anubrata Das*, Alexander Boltz*, Didi Zhou, Daisy Pinaroc, Matthew Lease, Min Kyung Lee

CSCW'24 (Honorable Mention). Proceedings of the 28th ACM Conference on Computer Supported Cooperative Work (CSCW), 2024


True or false? Cognitive load when reading COVID-19 news headlines: an eye-tracking study


Li Shi, Nilavra Bhattacharya, Anubrata Das, Jacek Gwizdka

CHIIR 2023, 2023


The state of human-centered NLP technology for fact-checking


Anubrata Das, Houjiang Liu, Venelin Kovatchev, Matthew Lease

Information Processing \& Management, vol. 60, Elsevier, 2023, p. 103219


Fairly accurate: Learning optimal accuracy vs. fairness tradeoffs for hate speech detection.


Venelin Kovatchev, Soumyajit Gupta, Anubrata Das, Matthew Lease

arXiv preprint, 2022


The Effects of Interactive AI Design on User Behavior: An Eye-tracking Study of Fact-checking COVID-19 Claims


Li Shi, Nilavra Bhattacharya, Anubrata Das, Matt Lease, Jacek Gwizdka

CHIIR 2022, 2022, pp. 315--320


ProtoTEx: Explaining Model Decisions with Prototype Tensors


Anubrata Das*, Chitrank Gupta*, Venelin Kovatchev, Matthew Lease, Junyi Jessy Li

ACL 2022, 2022


longhorns at DADC 2022: How many linguists does it take to fool a Question Answering model? A systematic approach to adversarial attacks.


Venelin Kovatchev, Trina Chatterjee, Venkata S Govindarajan, Jifan Chen, Eunsol Choi, Gabriella Chronis, Anubrata Das, Katrin Erk, Matthew Lease, Junyi Jessy Li, others

(DADC Workshop 2022) Proceedings of the First Workshop on Dynamic Adversarial Data Collection, 2022, pp. 41--52


The Case for Claim Difficulty Assessment in Automatic Fact Checking


Prakhar Singh, Anubrata Das, Junyi Jessy Li, Matthew Lease

arXiv preprint arXiv:2109.09689, 2021


Fairness and Discrimination in Information Access Systems


Michael D Ekstrand, Anubrata Das, Robin Burke, Fernando Diaz

(FnTIR) Foundations and Trends{\textregistered} in Information Retrieval, 2022, vol. 16, 2021, pp. 1--177


Pareto Solutions vs Dataset Optima: Concepts and Methods for Optimizing Competing Objectives with Constraints in Retrieval.


Soumyajit Gupta, Gurpreet Singh, Anurata Das, Matthew Lease

ACM SIGIR ICTIR 2021, 2021


Fast, accurate, and healthier: Interactive blurring helps moderators reduce exposure to harmful content


Anubrata Das, Brandon Dang, Matthew Lease

AAAI HCOMP 2020, vol. 8, 2020, pp. 33--42


CobWeb: A Research Prototype for Exploring User Bias in Political Fact-Checking


Anubrata Das, Kunjan Mehta, Matthew Lease

arXiv preprint arXiv:1907.03718, 2019


FACTS-IR: Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval


A Roegiest, A Lipani, A Beutel, A Olteanu, A Lucic, A Stoica, A Das, A Biega, Bart Voorn, C Hauff, others

2019


Dataset bias: A case study for visual question answering


Anubrata Das, Samreen Anjum, Danna Gurari

(ASIS\&T 2019) Proceedings of the Association for Information Science and Technology, vol. 56, John Wiley \& Sons, Ltd, 2019, pp. 58--67


A Conceptual Framework for Evaluating Fairness in Search


Anubrata Das, Matthew Lease

arXiv preprint arXiv:1907.09328, 2019


Interactive information crowdsourcing for disaster management using SMS and Twitter: A research prototype


Anubrata Das, Neeratyoy Mallik, Somprakash Bandyopadhyay, Sipra Das Bit, Jayanta Basak

(PerCom Workshops) 2016 IEEE International Conference on Pervasive Computing and Communication Workshops, IEEE, 2016, pp. 1--6


Predicting trends in the twitter social network: a machine learning approach


Anubrata Das, Moumita Roy, Soumi Dutta, Saptarshi Ghosh, Asit Kumar Das

Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, Revised Selected Papers 5, Springer International Publishing, 2015, pp. 570--581


Fairness in recommender systems


Michael D Ekstrand, Anubrata Das, Robin Burke, Fernando Diaz

Recommender systems handbook, Springer, 2012, pp. 679--707

Share

Tools
Translate to